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Abstract: Cardiovascular diseases (CVDs) are a major cause of death worldwide, emphasizing the importance of better early 

detection methods. This study introduces a machine learning model to detect CVDs by analyzing vital sign information. The 

model, which was trained using a cardiovascular dataset, utilizes three algorithms: Support Vector Machine (SVM), Naïve 

Bayes, and Decision Tree. It assesses the health status of patients by predicting vital sign values, allowing healthcare providers 

to receive timely alerts. Following the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology, a proof-

of-concept web application was created with object-oriented design principles and implemented using Python. This application 

predicts the likelihood of CVD and streamlines the scheduling of doctor appointments, promoting quick medical intervention. 

Our findings reveal that the Decision Tree classifier performed the best in accurately identifying patients who are at risk based 

on abnormalities in vital signs. This method can potentially enhance early detection of CVDs and improve the timing of medical 

care. 
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1. Introduction 

 

Cardiovascular diseases (CVDs) stand as a formidable global health challenge, exerting a considerable toll on public health by 

contributing significantly to morbidity and mortality across diverse populations. The World Health Organization (WHO) 

highlights that cardiovascular diseases claim a staggering 17.9 million lives annually [1], cementing their status as the foremost 

cause of death on a global scale. Early disease detection and precise diagnosis are imperative, as timely interventions can 

effectively mitigate associated risks, bolstering treatment outcomes. In recent times, the convergence of medical insights and 

computational prowess has paved the way for transformative advancements in healthcare. Machine learning (ML), as an aspect 

of artificial intelligence (AI), has emerged as a potent ally in addressing intricate medical challenges, particularly the early 

detection and prediction of cardiovascular diseases [2]. The confluence of data-driven methodologies with clinical expertise 

has the potential to usher in a paradigm shift in how healthcare practitioners approach risk assessment, diagnosis, and patient 

care. The timely and accurate detection of cardiovascular diseases (CVDs) is critical for effective treatment and better patient 

outcomes [16]. Recent progress in medical knowledge, especially in machine learning (ML) and artificial intelligence (AI), has 
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paved the way for transformative innovations in healthcare [17]. This research represents a significant leap forward, focusing 

on developing an advanced web-based interface driven by machine learning technology [18]. 

 

This research centers on creating a cutting-edge web-based platform designed to automatically assign patients to appropriate 

doctors, facilitating early-stage detection of cardiovascular diseases [19]. By harnessing the power of machine learning, this 

interface acts as a dynamic and intelligent tool, streamlining the process of patient allocation and disease identification. This 

innovative approach aims to revolutionize traditional risk assessment, diagnosis, and patient care methods within the healthcare 

sector [20]. By integrating medical expertise with data-driven methodologies, we aim to redefine how healthcare professionals 

approach cardiovascular disease management [21]. Through this research, we aspire to create a user-friendly, accessible tool 

tailored for medical practitioners and healthcare workers [22]. This tool enhances the efficiency of patient assignment and 

contributes significantly to the overall improvement of cardiovascular disease management, ultimately leading to better 

healthcare outcomes for patients globally [23]. 

 

2. Literature Review 

 

2.1. Cardiovascular Diseases 

 

Integrating machine learning (ML) techniques into cardiovascular disease (CVD) detection is anchored in a robust theoretical 

framework that amalgamates data-driven methodologies with predictive modeling [24]. As a subset of artificial intelligence 

(AI), ML offers a paradigm shift in healthcare by capitalizing on its ability to uncover intricate patterns and latent relationships 

within voluminous and complex datasets. In CVD detection, ML algorithms present an avenue to unearth subtle precursors of 

disease onset, enabling timely intervention and improved patient outcomes [25]. 

 

Supervised learning algorithms are central to the theoretical foundation, underpinning the crux of CVD prediction. These 

algorithms encompass classification and regression models, each serving as an instrumental tool in discerning patterns and 

making informed predictions. Classification algorithms, such as logistic regression, operate on labeled data to quantify the 

relationship between input variables and the likelihood of a binary outcome, such as the presence of a cardiovascular condition 

[3]. On the other hand, Support Vector Machines (SVMs) navigate the intricacies of classification by leveraging a decision 

boundary to segregate data points into discrete categories, making them particularly adept at identifying complex patterns 

within multidimensional data [4]. 

 

Ensemble methods, exemplified by Random Forest, further enrich the theoretical landscape. These methods amalgamate 

multiple base models to enhance predictive accuracy. In the context of CVD detection, a Random Forest generates an ensemble 

of decision trees and amalgamates their outputs, leading to predictions of heightened robustness [26]. Additionally, Neural 

Networks, inspired by the human brain’s neural structure, bring forth the domain of deep learning and hierarchical feature 

extraction. The unparalleled capacity of Neural Networks to model intricate nonlinear relationships within data is particularly 

advantageous in deciphering complex medical domains, including cardiovascular disease detection [27]. 

 

2.2. Prediction Models 

 

Prediction models are used to analyze and assess the performance, future outcomes, or trends [5]. A sustainable forecasting 

model that improves crop assessment adoption and helps identify how to grow crops while managing diseases was presented 

herein. This model aims to improve the timeliness, effectiveness, and foresight to control crop diseases while reducing yield 

loss, environmental impact, and economic cost. The data set used in this approach was a combination of pathogen, host, and 

environment, and they were used under different assumptions. This design supported datasets, feasibility testing, evaluation of 

different models, and forecast metrics. Its framework integrates multivariate spatial assumptions and threshold-based infection, 

which improves previous approaches. It covers climate covariates, dynamic disease parameters, spatial dependence, and 

assumptions on disease climate. Southern Alberta, Canada, was the area of study, and it is the major area in western Canada 

that produces lots of agricultural produce with a growing period of about 123 days (May-August).  

 

The Alberta Climate Information Service provided satellite measurements of the area. This report covered major disease risk 

variables like liquid water on the canopy surface and temperature between 1961 and 2016. A site-specific model was evaluated 

to predict the disease outbreak and implemented using a validated R code [28]. The hhh4 (a class of spatiotemporal models 

used for analyzing subnational case count data implemented in the R package) spatiotemporal-endemic model was also 

implemented to compare the spatial dependence assumptions with the CLR (Common Language Runtime) site-specific model 

predictions. At the end of the study, the integrated framework offered a feasible way to combine diverse datasets and models 

of different assumptions to explain uncertainty and variability in crop disease [29]. The hhh4 and CLR models predict infection 

time correctly, but the CLR model predicts the timing of the infection a week earlier than it occurred. In order to cover a larger 
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area, an expanded evaluation of the model will require large heterogeneous assumptions and a seasonal airborne surveillance 

program. Predictive models have the potential to control health events [30].  

 

In order to know the probability of stratifying patients having a certain outcome, a prediction model was proposed using 

regression technique and the s methodology of prediction modeling. The model aims to help identify which patients have a 

better chance of recovering if a particular event happened to them and which treatment method is more adaptable for them [31]. 

This model was built to consider events like the probability of having a tumor and the chance of surviving a side effect or 

cancer. Linear regression and binary regression models were used while considering the metrics available. A time-to-event 

analysis of when this event would occur was also carried out. It was difficult for the model to perform well beyond what it was 

trained for [32]. This led to an understanding that a flexible algorithm should be used, which makes it easy to follow the data 

points in the training set, which will reduce errors. Since the model is a general model to predict several events, the number of 

features was reduced to improve its generalization and increase its interpretability. This model was tested to evaluate its 

performance using a separate dataset from its training set. It showed generalizability and faster computation time [33].  

 

Liu et al. [6] predicted total crop output using a Wavelet neural network (WNN). This paper aimed to predict agricultural 

production in China from 2002 to 2010. Wavelet neural networks, which constituted neural network theory, and wavelet 

analysis theory were used to build the algorithm. The neural network has good fault tolerance capability and self-learning 

function, and the wavelet transform has a good time-frequency localization property, and both combined have a powerful 

advantage in the algorithm. A comparison test was conducted between the traditional back propagation (BP) network prediction 

model and the model trained using a gradient-descent algorithm. The results showed that this model had better prediction 

accuracy and a faster convergence rate. This model showed superior to the traditional BP neural network model.   

 

Siontis et al. [7] Crop yield prediction review analyzed and investigated five hundred sixty-seven studies carefully. It was found 

that several crop yield prediction models are based on features like soil type, rainfall, and temperature. This study aims to know 

the features and algorithms used in crop yield prediction studies. A review protocol was defined where research questions were 

set and used to select relevant studies from the database. Once the studies were selected using specific filters, they were accessed 

using a quality criterion and set of exclusions. All the relevant studies used in this review were synthesized to ensure they 

respond to the research questions. It was noticed that models with many features did not provide the best performance, but 

those with fewer features did. This study showed that the algorithm most applied to these models is Artificial Neural Networks 

based on machine learning projects. It analyzed an additional 50 papers in deep learning literature, and it showed that the most 

widely used deep learning algorithm is Convolutional Neural Networks (CNN), and other commonly used algorithms are Long-

Short Term Memory (LSTM) and Deep Neural Networks (DNN). At the same time, commonly used models are neural 

networks, random forests, gradient-boosting trees, and linear regression. This work showed a need for further research on crop 

yield prediction as no specific conclusion has been drawn as to what model is best for crop yield.   

 

In precision agriculture, crop yield prediction is a challenging part. Many prediction models have been proposed and validated; 

every data set depends on different factors. It could be the use of fertilizer, climate, soil, seed variety, and weather [8] and the 

design of an integrated climatic assessment indicator (ICAI) for wheat production [34]. This study covered the Jiangsu Province 

in China and aimed to predict wheat yield variations. Several meteorological factors affect crops in that region’s climatic 

suitability. Datasets produced from meteorological assimilations combined with observation data were used to construct the 

indicator. While modeling the ICAI algorithm, Support Vector (SVM) and Random Forest (RF) were compared to find which 

machine learning algorithm performs better in an independent test set [35]. In order to detect the climatic yield, Monte Carlo 

simulations were carried out to determine a reasonable division for the Kolmogorov-Smirnov (KS) test. Three values were 

generated using the indicator, including normal and yield increment yield loss. These values’ spatial and temporal prediction 

accuracy increased from 67.8% to 100% during the Central, Northern, and Southern Jiangsu tests. A more advanced indicator 

must be produced to cover a larger region [36].  

 

Prediction models in agriculture can estimate the actual crop yield, but a better performance in the prediction is still needed. 

This shows that prediction in agriculture is not easy; it is a task with several complicated steps [9] to predict crop yield using 

machine learning. This work covered several large farms in Western Australia, and the crop yield of these farms was checked 

using diverse machine-learning datasets. Datasets such as soil test results, apparent electrical conductivity, Moderate Resolution 

Imaging Spectroradiometer (MODIS), and rainfall were used to predict the crop yield. Rather than access just one dataset like 

other predictive models, this study aimed to use all the datasets from 11000 to 17000-hectare canola, barley, and wheat crops 

from 2013, 2014, and 2015.  

 

About 10m of the grid was processed for yield data, and for each observation point, the time and associated predictor variables 

in space were collated. Then, a 100m spatial resolution was processed for yield data using a modeling yield [37]. Three random 

forest models were created based on mid-season, pre-sowing, and late-season conditions to predict the crop yield of the three 

crops using the same dataset [38]. The results showed that the models accurately predicted the crop yield relatively. This was 
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partly because the datasets were available for every season, improving predictions [39]. Future work should elaborate on this 

yield monitor data by exploring integrating more data sets into the models, increasing the possibility of the yield forecast to 

guide management decisions, and focusing on predicting finer spatial resolution within fields [40].  

 

2.3. Machine Learning Algorithms  

 

The two fields share much regarding the relationship between data mining and machine learning. Machine learning is a field 

tasked with predicting from a known data property. Data mining, on the other hand, is a field tasked with discovering the 

properties of the data. Data mining is used interchangeably with knowledge discovery, which uses machine learning but with 

different needs and purposes [41]. In contrast, machine learning uses models such as unsupervised learning to find unknown 

phenomena in datasets. The types of machine learning models will be explained later in this section. The relationship between 

optimization and machine learning is centered on how machine learning models use optimization functions to minimize errors 

in their prediction [42].  

 

After developing any machine learning with the least loss, the next challenge is how the model generalizes any other unseen 

data. The application of machine learning is becoming common, and people are accepting machine learning to make choices, 

from music on YouTube to partners on dating apps to healthcare centers and practitioners on healthcare databases. The ability 

of machine learning to function better on unseen data will keep machine learning models making these choices for the 

foreseeable future. Generalization has become an area of machine learning borrowed from mathematics to do this; just like data 

mining, the difference between machine learning and statistics is not an application but rather a goal. Machine learning aims to 

find ways to generalize data with the minimum loss, while statistics aims to find inferences in the dataset [10]. 

 

The development of machine learning was centered on making computer systems intelligent; because of this, machine learning 

has a large application area. The application of machine learning is almost in every sector, as far as the sector produces data to 

train ML models. Machine learning (ML) applications range from healthcare, agriculture, medicine diagnosis and discovery, 

military, banking, marketing, internet security, etc. Research has found that machine learning has proved its application in 

solving complex healthcare images using computer vision techniques. For example, machine learning algorithms can identify 

malignant cells in cancer imagery. Another useful technique is Natural Language Processing (NLP), which processes large 

medical records [11]. Machine learning is learned in four different ways: supervised learning, unsupervised learning, 

reinforcement learning, and semi-supervised learning. The nature or approach machine learning uses to learn depends on the 

nature of the data given and the kind of problem the machine learning is set to solve. In the following sections, we will explain 

the first two of the four approaches in machine learning, provide examples, explain their application, and explain how they 

work. 

 

2.4. Supervised Learning  

 

The supervised approach of machine learning learns by example; the data with which this type of machine learning is developed 

comes with input objects and the desired output [12]. The various algorithms generate a function that maps inputs to desired 

outputs. One standard formation of the supervised learning task is the classification problem: the learner is required to learn (to 

approximate the behavior of) a function that maps a vector into one of several classes by looking at the input and output 

examples of the function. The model then makes predictions on the unseen dataset. The model is expected to perform the task 

reasonably, with learning bias (inductive bias) in mind, because data is believed to be changing with time [13]. 

 

Supervised learning works in the way whereby given a set of 𝑁 as the training data (𝑥1, 𝑦1), … (𝑥𝑁 , 𝑦𝑁) whereby 𝑥𝑖 is the feature 

vector of the 𝑖𝑡ℎ and 𝑦𝑖  is its label, a learning algorithm seeks a function𝑔: 𝑋 → 𝑌, where 𝑋 is the input space, and 𝑌 is the 

output space. The function 𝑔 is an element of some space of possible function𝐺, Usually called the hypothesis space. It is 

sometimes convenient to represent 𝑔 using a scoring function 𝑓: 𝑋 × 𝑌 →  ℝ such that 𝑔 is defined as returning the 𝑦 value 

that gives the highest score: 𝑔(𝑥) =  𝑎𝑟𝑔𝑦 max 𝑓(𝑥, 𝑦). Let F denote the space of scoring functions. Machine learning 

algorithms have been applied in so many fields. One algorithm solves many problems, but hyperparameter tuning makes an 

algorithm useful for different problems [43].  

 

Hyperparameter tuning is used to tune a machine learning algorithm’s hyperparameter towards generalizing the problem more 

correctly without falling for overfitting [14]. Therefore, the hyperparameter sets values of the supervised learning (or 

unsupervised learning algorithm) before training the model. Hyperparameter tuning is as important as clean data to machine 

learning or feature extraction. After training an algorithm, the way the algorithm reacts to new data is called generalization. 

The need for an algorithm to understand new data that it was not trained on or tested makes the algorithm useful. Learning 

models are probabilistic models, where 𝑔 takes the form of a conditional probability model 𝑔(𝑥) = 𝑃(𝑦|𝑥), or 𝑓 takes the form 

of a joint probability model where 𝑓(𝑥, 𝑦) = 𝑃(𝑥, 𝑦). Machine learning models such as the Naïve Bayes algorithm use the joint 

probability model, and models like the Logistic regression use the conditional probability model [44]. The most important thing 
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to consider when developing supervised learning is the dataset, whereby the nature of the data differs from one dataset to 

another. El-Kady et al. [15] explain that there are two approaches to choosing 𝑓 or 𝑔, namely empirical risk minimization and 

structural risk minimization. The empirical risk minimization looks for the function that best fits the dataset, while the structural 

risk minimization includes a penalty function that controls the bias/variance tradeoff. 

 

There are many supervised learning algorithms, each with strengths and weaknesses, but no one can perform every supervised 

learning task [45]. There are factors to consider when choosing a supervised learning model. The factors include bias-variance 

tradeoff, a property of a supervised learning algorithm where the variance of the parameter estimated across samples can be 

reduced by increasing the bias in the estimated parameters [46]. Function complexity and data size: The amount of data is very 

important when training a machine learning algorithm. Many machine learning algorithms can learn from a dataset with a small 

size because of the complexity of the learning function [47]. At the same time, some machine learning algorithms need a large 

data size because of the complexity of the interaction among many different input features and behave differently in different 

parts of the input space. The issue of dataset size is important, but the data quality is also very important [48]. As many machine 

learning experts say, “Your model is as good as your data.”  

 

However, the data size mostly when training a deep learning algorithm is also very important, as simple machine learning 

algorithms can learn on a simple and small dataset [49]. The dimensionality of the data: the dimension of the dataset is also 

important to consider when choosing a supervised learning algorithm. The dimensionality of a dataset here refers to the size of 

data or the features available in input 𝑥 data [50]. Data with large dimensions make the learning problem very difficult, and 

even if the true function relied on a few of the dataset’s features to learn, large dimensionality can cause the model to have high 

variance because the model will be confused about which features are important [51]. To solve this problem, some data mining 

methods are used to select the most important features, but selecting the best feature is not the only solution. Dimensionality 

reduction methods are also used to simplify the dataset [52].  

 

These are the most important things to watch when choosing a supervised learning model; however, there are other important 

things, such as the noise in the data due to human error when creating the dataset in the first place. Other issues are heterogeneity 

of the output data and redundancy in the dataset [53]. The noise in the dataset is very important as the most recent controversial 

discussions in machine learning have been raised because of noise or sometimes prejudices in the dataset the model created. In 

2016, The Guardian published a report of the first beauty contest judged by a machine learning model, which was found to be 

biased [54]. The model was found not to like people with darker skin color. Another important report by Forbes titled Why 

Artificial Intelligence is set up to fail LGBTQ people [55]. These and many other examples are concluded to be a result of 

human prejudice and or because of the nature of machine learning, whereby much of what happens in the hidden layers is 

considered a Black box [56]. The machine learning algorithms, especially the deep learning algorithms, are Black boxes in a 

way where the activities in the hidden layers of the algorithms are unknown to some extent, which raises an entire field of 

research on machine learning explain-ability [57]. The field of machine learning explain-ability is the process of understanding 

how machine learning algorithms work and how they make their choices, or it is the complete opposite of the Blackbox concept 

[58]. There are two classes of supervised learning, namely, the regression algorithm and the classification algorithm.  

 

2.5. Unsupervised Learning 

 

Four approaches are used to make unsupervised learning: clustering, anomaly detection, latent variable models, and neural 

networks (neural networks can be supervised, unsupervised, and reinforcement learning). Clustering is a model under 

unsupervised learning that groups data points into groups that look alike or have similar properties. Cluster analysis or clustering 

is the main activity in exploratory data analysis, usually used in data mining for information retrieval, pattern recognition, and 

image analysis [59]. However, machine learning is used to make models that predict which data points are similar and thus 

belong to the same group. The notion of the cluster in the clustering unsupervised is a very loose term. Different algorithms are 

defined under this class as every algorithm has its way of making predictions, but most importantly, the group data is in classes 

of data points [60]. Anomaly or outlier detection is a form of unsupervised learning used to detect noise in a dataset. The 

application of this class of unsupervised machine learning is very wide, as it is used in finding rare items, events, or observations 

that raise suspicions in a dataset [61].  

 

A latent variant is a form of unsupervised learning that assumes the responses on the indicators, or manifest variables, are the 

results of an individual’s position on the latent variable and that the manifest variables have nothing in common after controlling 

for the latent variable. As mentioned earlier, artificial neural networks (ANNs) can be both unsupervised and supervised 

learning; however, the model simulates the human brain when making decisions or understanding the world. 

 

3. Methods  

 

3.1. Data Collection and Preprocessing 
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This section outlines the methodology employed in developing an efficient machine learning model for the early detection of 

cardiovascular diseases (CVD) and creating a web-based application for real-time predictions and interactions with healthcare 

professionals. The methodology includes data collection, preprocessing, model selection, evaluation, and web-based interface 

development. The research adopted the Cross-Industry Standard Process for Data Mining (CRISP-DM) for model development 

and Object-Oriented Development Design (OODM) for the web-based interface. CRISP-DM, a widely recognized cyclic 

framework, guides the analytical aspects of this study. It encompasses six phases: Business Understanding, Data Understanding, 

Data Preparation, Modeling, Evaluation, and Deployment. The initiation involves defining project success criteria and a well-

defined problem scope. This guides subsequent steps, starting with data collection. The dataset for this research was sourced 

from Kaggle, an online data repository. It contains 319,000 records in a comma-separated values (CSV) format. The data 

includes past physical and medical history of patients with and without cardiovascular disease. This extensive dataset provides 

a comprehensive basis for developing predictive models. 

 

Data preprocessing is crucial for refining raw data into a coherent dataset. This process includes data cleaning, normalization, 

and feature extraction. Data cleaning involves handling missing values, removing duplicates, and correcting errors. Ensuring 

data quality at this stage is essential for the model’s reliability. Normalization standardizes data ranges to improve the model’s 

performance, ensuring all features contribute equally to the analysis and avoiding biases due to varying scales. Feature 

extraction involves selecting relevant information from the dataset, where features are categorized into attributes and targets, 

aligning with the research objectives. Dimensionality reduction techniques enhance robustness, reducing the dataset’s 

complexity without losing critical information. The data preparation phase consumes a substantial portion of the project 

timeline, significantly impacting the project’s success. Properly processed data lays the foundation for effective model training 

and prediction. 

 

3.2. Model Development 

 

The model development phase involves selecting appropriate machine learning algorithms, designing a testing strategy, 

building executable models, and evaluating them to choose the optimal one. Four machine learning algorithms were selected 

for this study: Support Vector Machine (SVM), Naive Bayes classifier, Random Forest, and Logistic Regression. These 

algorithms were trained using the prepared training dataset. SVM is effective in high-dimensional spaces, making it suitable 

for CVD prediction. The Naive Bayes classifier is simple, efficient, and useful for predicting CVD likelihood based on 

demographic and clinical data. Random Forest, an ensemble method, improves prediction accuracy by combining multiple 

decision trees. Logistic regression is useful for binary classification problems like predicting the presence or absence of CVD. 

The models were iteratively evaluated using performance metrics such as precision, recall, and F1-score to ensure they were 

fit for use. The highest accuracy model was selected for system prediction. 

 

3.3. Web-Based Application Development 

 

The development of the web-based application followed the Object-Oriented Design Methodology (OODM), which includes 

phases such as requirements gathering, system design, implementation, and testing. This approach ensures the creation an 

intuitive, navigable, and interactive interface. Requirements gathering involves understanding user needs and defining the 

application’s functionality. System design establishes the application’s architecture, ensuring scalability and ease of use. 

Implementation involves coding and developing the application based on the design specifications. Testing ensures the 

application works as intended and is free of bugs. The web-based application facilitates real-time predictions and interactions 

with healthcare professionals and individuals concerned about their cardiovascular health. The system classifies patients’ health 

status and alerts medical experts based on the predicted vital signs values. 

 

4. Results 

 

The primary objective of our research was to construct a predictive model capable of identifying individuals at an increased 

risk of developing cardiovascular diseases (CVD) at an early stage using machine learning. We utilized a dataset from Kaggle, 

consisting of over 319,000 records with 18 features, including physical metrics, lifestyle choices, medical history, and 

demographic details. This dataset, devoid of missing values, provided a solid foundation for developing our machine-learning 

models. 

 

4.1. Dataset Description 

 

The dataset’s numerical features revealed intriguing trends. The average BMI of 28.3 suggested a prevalence of overweight 

and obesity. Physical and mental health scores averaged 3.37 and 3.89 out of 30, respectively, with potential skew towards 

lower scores. The average sleep duration was 7.09 hours, with most individuals falling between 6 and 8 hours, although extreme 

values were present. 
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4.2. Model Development and Testing 

 

In the model development phase, the dataset was partitioned into training (80%) and testing (20%) subsets to evaluate the 

models’ performance on unseen data. We employed four machine learning algorithms: Support Vector Machine (SVM), 

Logistic Regression, Naive Bayes, and Random Forest Classifier. Table 1 summarizes the accuracy scores of these algorithms. 

 

Table 1: Summary of Algorithm’s Accuracy 

 

 

 

 

 

 

 

 

The Support Vector Machine (SVM) achieved the highest accuracy at 91.72%, followed closely by Logistic Regression at 

91.64% and Random Forest at 91.43%. Naive Bayes had a lower accuracy of 86.56% (Figure 1). 

 

 

  
 

Figure 1: Algorithm Accuracy Comparison 

 

Further analysis using precision, recall, and F1-score provided deeper insights into the models’ performance across different 

classes. Table 2 summarizes these metrics for each algorithm. 

 

Table 2: Summary of Algorithm’s Classification Report 

 

Algorithm Target Precision Recall F1-Score 

Support Vector Machine 0 0.92 1.00 0.96 

 1 1.00 0.00 0.00 

Logistic Regression 0 0.92 0.99 0.96 

 1 0.48 0.11 0.18 

Naive Bayes 0 0.95 0.90 0.93 

 1 0.29 0.44 0.35 

Random Forest Classifier 0 0.92 0.99 0.95 

 1 0.43 0.11 0.17 

Algorithm Accuracy Score (%) 

Support Vector Machine 91.72 

Logistic Regression 91.64 

Naive Bayes 86.56 

Random Forest Classifier 91.43 
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SVM displayed strong performance for class 0 but struggled with class 1, resulting in an F1-score of 0.00 for class 1. Logistic 

Regression and Random Forest showed similar trends, performing well for class 0 but poorly for class 1 (Figure 2).  

 

 
 

Figure 2: Comparison of Precision, Recall, and F1-Score for Algorithms 

 

Naive Bayes exhibited a more balanced performance across both classes but with lower overall precision and recall for class 1. 

 

5. Discussion 

 

The study aimed to develop a predictive model for early detection of cardiovascular diseases (CVD) using machine learning 

techniques. Machine learning has become an invaluable tool in healthcare because it can process large datasets, detect complex 

patterns, and make predictions that can aid in early diagnosis. Our models, including Support Vector Machine (SVM), Logistic 

Regression, and Random Forest, demonstrated promising results in classifying individuals at risk of CVD. However, while the 

models exhibited high accuracy, challenges emerged regarding their ability to handle the class imbalance within the dataset, 

specifically in predicting the minority class (class 1), representing individuals with CVD. The SVM model achieved the highest 

accuracy, indicating its strong performance distinguishing between at-risk individuals and those not at risk. However, the model 

exhibited a significant shortcoming in its ability to recall instances of class 1. Although it accurately identified individuals from 

the majority class (class 0, those without CVD), it often failed to classify individuals in the minority class correctly. This issue 

points to a bias in the SVM model towards the majority class, which, in medical applications, is a critical limitation. Failing to 

identify individuals at risk of CVD can have severe consequences, potentially leading to delayed or missed diagnoses. 

 

Logistic regression, although slightly less accurate than SVM, faced similar challenges. Logistic regression is often preferred 

in healthcare settings for its interpretability; however, like the SVM model, it struggled with the minority class. The imbalance 

in the dataset caused Logistic Regression to overfit the majority class, reducing its ability to identify the minority class. This 

imbalance meant that individuals with CVD were frequently misclassified as not at risk, diminishing the model’s overall utility 

for early detection. Random Forest, an ensemble learning method, also achieved high accuracy in predicting CVD risk, 

comparable to Logistic Regression. While Random Forest is typically robust against overfitting and performs well in 

classification tasks, it still encountered difficulties with class imbalance. Like the other models, Random Forest exhibited a bias 

towards class 0 and struggled to recall instances of class 1 accurately. This limitation highlights a recurring challenge in medical 

datasets, where class imbalance can significantly impact the effectiveness of machine learning models, particularly when 

detecting critical, yet less frequent, conditions like CVD. 

 

The problem of class imbalance is a common issue in healthcare datasets, where most individuals are often healthy, while a 

smaller proportion suffer from specific conditions. This imbalance can lead to models that perform well in the majority class 

but fail to identify high-risk individuals in the minority class. In our study, the minority class represented individuals with CVD, 
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and the models’ failure to accurately classify this group underscores the need for specialized techniques to address class 

imbalance. Simply relying on accuracy as a metric can be misleading in such cases, as high accuracy may be achieved by 

correctly classifying the majority class while ignoring the minority class. Several techniques can be employed to improve the 

models’ ability to detect individuals in the minority class. One of the most effective methods for handling class imbalance is 

oversampling, which involves generating synthetic data for the minority class. The Synthetic Minority Over-sampling 

Technique (SMOTE) is commonly used for this purpose, creating synthetic instances by interpolating between existing minority 

class examples. This method helps balance the dataset, allowing the model to learn better decision boundaries for the minority 

class and improve recall for class 1. 

 

Undersampling, another technique, reduces the number of instances in the majority class to match the size of the minority class. 

While this can help address class imbalance, it also risks discarding valuable information from the majority class, which may 

negatively impact the model’s overall performance. Advanced machine learning algorithms, such as ensemble methods and 

cost-sensitive learning, offer alternative solutions to address class imbalance. Ensemble methods, like XGBoost or AdaBoost, 

combine multiple models to improve classification accuracy, while cost-sensitive learning assigns higher penalties for 

misclassifying the minority class. These techniques encourage the model to focus on correctly identifying instances from the 

minority class. Despite the challenges posed by class imbalance, the richness of the dataset used in this study provided a solid 

foundation for the machine learning models. The dataset included a wide range of features, such as physical health metrics 

(e.g., blood pressure, cholesterol levels), lifestyle factors (e.g., smoking habits, exercise frequency), and demographic details 

(e.g., age, gender). These features enabled the models to consider various factors when predicting CVD risk, increasing the 

likelihood of identifying at-risk individuals. 

 

Nevertheless, while the dataset was rich in features, further refinement of the models is necessary to improve their performance, 

particularly for the minority class. One promising approach is feature engineering, which involves creating new features or 

modifying existing ones to capture the underlying patterns in the data better. For example, interactions between certain 

variables, such as age and blood pressure, could provide more insightful information about an individual’s CVD risk than either 

variable considered independently. The models’ predictive power could be enhanced by carefully crafting new features or 

selecting the most relevant ones. In addition to feature engineering, incorporating additional relevant features from external 

sources, such as genetic information or comprehensive medical histories, could further improve the models’ accuracy. Including 

such data could give the models a more complete view of each individual’s health status, helping them better identify those at 

risk for CVD. Additionally, synthetic data generation techniques, such as Generative Adversarial Networks (GANs), could be 

explored in future research to generate synthetic samples for the minority class. These techniques have shown promise in other 

fields for creating realistic data and could prove valuable for addressing class imbalance in medical datasets. 

 

Another critical consideration for adopting machine learning models in healthcare is the interpretability and explainability of 

these models. Healthcare professionals and end-users must trust the models’ predictions and understand the factors influencing 

those predictions. Suppose a model predicts that an individual is at high risk of CVD. In that case, healthcare practitioners need 

to know which factors such as high blood pressure, smoking, or family history—contributed most to that prediction. This 

transparency allows practitioners to make informed decisions about treatment and intervention. Explainability techniques, such 

as SHapley Additive exPlanations (SHAP) values, provide a powerful method for interpreting machine learning models. SHAP 

values assign importance scores to each feature, explaining how each contributed to the final prediction. By using SHAP values, 

healthcare practitioners can gain clear insights into why a model made a particular prediction, increasing trust in the model’s 

outputs and ensuring that predictions are based on medically relevant factors. 

 

Explaining model predictions is crucial for building trust with healthcare providers and ensuring that models do not rely on 

irrelevant or biased features, which could lead to incorrect or unfair predictions. For example, if a model consistently assigns 

high risk to individuals based on irrelevant demographic features rather than their health status, this could lead to discriminatory 

outcomes. Ensuring transparency in machine learning models can help mitigate these risks and promote the ethical and effective 

use of machine learning in healthcare. In light of these findings, future work in this area should focus on several key areas. 

First, addressing class imbalance remains a top priority. Techniques such as oversampling, undersampling, and advanced 

algorithms should be further explored to improve the models’ ability to detect high-risk individuals in the minority class. 

Additionally, incorporating new features from external data sources, refining feature engineering approaches, and exploring 

synthetic data generation methods will be essential for improving the predictive power of machine learning models for CVD 

risk. 

 

Moreover, enhancing model transparency and interpretability should be a key focus of future research. Techniques such as 

SHAP values can provide healthcare practitioners with clear insights into the models’ decision-making processes, fostering 

trust and ensuring that machine learning models are used responsibly and effectively in medical practice. While machine 

learning models such as SVM, Logistic Regression, and Random Forest have shown promise in predicting CVD risk, class 

imbalance, and model transparency must be addressed to improve their utility in healthcare settings. By employing advanced 
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techniques to address class imbalance, refining feature selection, and enhancing model interpretability, machine learning can 

play a pivotal role in the early detection and prevention of cardiovascular diseases, ultimately saving lives. 

 

6. Conclusion 

 

This study successfully developed a machine learning-based model for the early detection of cardiovascular diseases, achieving 

high accuracy with Support Vector Machine, Logistic Regression, and Random Forest classifiers. The research utilized a robust 

dataset from Kaggle, encompassing various physical, lifestyle, and demographic features, to train and test the models. Despite 

the high accuracy, the models faced challenges in accurately predicting the minority class, underscoring the need for future 

improvements in handling class imbalance. The findings highlight the potential of machine learning in transforming 

cardiovascular disease management by enabling early detection and timely intervention. The proposed system can significantly 

enhance patient outcomes and contribute to the broader shift towards preventive healthcare by integrating predictive analytics 

into healthcare workflows. Future work will address the identified limitations, enhance model interpretability, incorporate real-

time data, expand the dataset, and develop a user-friendly interface for practical application. These advancements will improve 

the model’s predictive capabilities and ensure its seamless integration into real-world healthcare settings, ultimately 

contributing to the early detection and prevention of cardiovascular diseases on a larger scale. 
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